Перевод: со всех языков на русский

с русского на все языки

потери энергии при работе

  • 1 running losses

    1. потери энергии при работе (механизма)
    2. потери в процессе эксплуатации

     

    потери в процессе эксплуатации

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    потери энергии при работе (механизма)

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > running losses

  • 2 running loss

    Универсальный англо-русский словарь > running loss

  • 3 running losses

    Универсальный англо-русский словарь > running losses

  • 4 running loss

    потеря энергии при работе; потери в процессе эксплуатации

    Англо-русский словарь по машиностроению > running loss

  • 5 outage

    ['aʊtɪdʒ]
    1) Общая лексика: выпускное отверстие, остановка работы, перерыв (в подаче энергии), простой, утечка, утруска, бездействие (машины), перебой
    4) Строительство: перебой (в работе машины), простой в работе
    6) Экономика: перебой (в работе)
    8) Архитектура: перерыв (напр. в подаче электроэнергии)
    10) Нефть: аварийное отключение, выпуск, потери (нефти или нефтепродукта при хранении или транспортировке), потери жидкости в резервуаре при наполнении, потери жидкости в резервуаре при хранении, потери жидкости в резервуаре при хранении или наполнении, свободный объём для расширения жидкости в резервуаре
    11) Специальный термин: усушка
    13) Атомная энергия: планово-предупредительный ремонт (ППР) (АЭС), остановка реактора
    15) Энергетика: отключение блока
    17) Глоссарий компании Сахалин Энерджи: отключение электроэнергии
    18) Нефтегазовая техника потери нефти при хранении и транспортировке, свободный объём в резервуаре
    19) Микроэлектроника: отказ
    20) Сетевые технологии: выходить из строя
    21) ЕБРР: простои оборудования (выход из строя), простой (выход из строя оборудования), простой оборудования (по техническим причинам), перерыв в энергоснабжении, прекращение подачи электроэнергии
    28) Аварийное восстановление: выход из строя (Незапланированная неработоспособность вследствие отказа технического или программного обеспечения либо средств связи), перебой в работе (Незапланированная неработоспособность вследствие отказа технического или программного обеспечения либо средств связи)

    Универсальный англо-русский словарь > outage

  • 6 double conversion UPS

    1. источник бесперебойного питания с двойным преобразованием (энергии)

     

    источник бесперебойного питания с двойным преобразованием (энергии)
    -

    EN

    double conversion
    Topology of On-Line UPS (VFI class per IEC 62040-3). The AC mains voltage is converted to DC by means of an ac to DC Rectifier (or Charger), The DC voltage is then converted to conditioned AC by means of the Inverter.
    [ http://www.upsonnet.com/UPS-Glossary/]

    0423
    Структурная схема ИБП с двойным преобразованием энергии

    Вся потребляемая из питающей сети энергия поступает на выпрямитель и преобразуется в энергию постоянного тока, а затем инвертором - в энергию пере­менного тока.

    Высококачественные ИБП с двойным преобразованием энергии, как правило, имеют гальваническую развязку, что значительно улучшает помехоустойчивость защищаемого оборудования.

    Обязательным элементом ИБП двойного преобразования большой и средней мощности является байпас - устройство обходного пути. Байпас представляет собой комбинированное электронно-механическое устрой­ство, состоящее из так называемого статического байпаса и ручного (механическо­го, контактного) байпаса.

    Достоинства

    • Нулевое время переключения.
      В некоторых случаях данный фактор в настоящее время перестал играть решающую роль, потому что в современных компьютерах применяются блоки питания, соответствующие стандартам IEEE, согласно которым компьютер должен быть способен выдерживать перерыв в питании не менее 8.3 мс.
      При этом в off-line ИБП, выпускаемых фирмой АРС время переключения не превышает 8 мс.
    • Строгая стабилизация выходного напряжения.

    Недостатки

    • Высокая стоимость,
    • Повышенный уровень помех, вносимых самим ИБП в электрическую сеть,
    • Более низкий КПД по сравнению с другими типами ИБП.

    [ http://www.tcs.ru/reviews/?id=345 с изменениями]


    Часто в качестве синонима термина ИПБ с двойным преобразованием употребляют термин on-line ИБП. Это не верно, так как в группу on-line ИБП входят ИБП четырех типов (см. источник бесперебойного питания активного типа).

    В ИБП с двойным преобразованием вся потребляемая энергия поступает на выпрямитель и преобразуется в энергию постоянного тока, а затем инвертором — в энергию пере­менного тока.

    Технология двойного преобразования отработана и успешно используется свы­ше двадцати лет, однако ей присущи принципиальные недостатки:

    • ИБП является причиной гармонических искажений тока в электрической сети (до 30%) и, таким образом, — потенциально причиной нарушения работы другого оборудования, соединенного с электрической сетью; он имеет низкое значение входного коэффициента мощности (coscp);
    • ИБП имеет значительные потери, так как принципом получения выходного переменного тока является первичное преобразование в энергию постоянного тока, а затем снова преобразование в энергию переменного тока; в процессе такого двойного преобразования обычно теряется до 10 % энергии.

    Первый недостаток устраняется за счет применения дополнительных уст­ройств (входных фильтров, 12-импульсных выпрямителей, оптимизаторов-бусте­ров), а второй принципиально не устраним (у лучших образцов ИБП большой мощности КПД не превышает 93 %).

    Современные ИБП двойного преобразования оборудуются так называемыми кондиционерами гармоник и устройствами кор­рекции коэффициента мощности (coscp). Эти устройства входят либо в базовый комплект ИБП, либо применяются опционально и позволяют снять проблему с внесением гармонических искажений (составляют не более 3 %) и повысить коэф­фициент мощности до 0,98.

    Существуют схемы ИБП с двойным преобразованием 1:1, 3:1 и 3:3. Это означает:

    • 1:1 — однофазный вход, однофазный выход;
    • 3:1 — трехфазный вход, однофазный выход;
    • 3:3 — трехфазный вход, трехфазный выход.

    Схемы 1:1 и 3:1 целесообразно применять для мощностей нагрузки до 30 кВА, при этом симметрирование не требуется, и мощность инвертора используется ра­ционально. Следует иметь в виду, что байпас в таких схемах является однофазным и при переходе ИБП с инвертора на байпас для входной сети ИБП 3:1 становится несимметричным устройством, подобно ИБП 1:1.

    0429
    ИБП по схеме 3:1

    Особенностью данной схемы является наличие на входе конвертора 3:1. При его отсутствии ИБП имеет схему 1:1. Наличие конвертора не только превращает ИБП 1:1 в 3:1, но и позволяет осуществлять работу через байпас в симметричном режиме.

    0430
    ИБП по схеме 3:3

    ИБП по схеме 3:3 в отличие от ИПБ по схеме 3:1 имеет зарядное устройство для оптимизации режима заряда аккумулятор­ной батареи и преобразователь постоянного тока — бустер (booster DC/DC), позво­ляющий облегчить работу выпрямителя за счет снижения глубины регулирования. Таким образом обеспечивается меньший уровень гармонических искажений вход­ного тока. В некоторых случаях такую схему называют схемой с тройным преобра­зованием.

    Принципиально нет предпосылок выделять такие схемы в отдельный тип ИБП, так как остается общим главный принцип — выпрямление тока с его последующим инвертированием. Разумеется, в звене постоянного тока могут присутствовать сгла­живающие ёмкости, а в некоторых случаях — дроссель (на схемах не показаны). ИБП  работает по схеме 3:3 в любом режиме — при работе через инвертор (ре­жим on-line) и при работе через байпас. По отношению к питающей сети работа в ре­жиме on-line является симметричной, тогда как работа через байпас зависит от балан­са нагрузок по фазам. Впрочем, сбалансированность нагрузок по фазам в первую очередь важна для рационального использования установленной мощности самого источника, а по отношению к питающей сети небаланс по фазам при работе через бай­пас может проявить себя только при работе с ДГУ. Но в этом случае решающим будет не симметрия нагрузки, а её нелинейность.

    [ http://electromaster.ru/modules/myarticles/article.php?storyid=365 с изменениями]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > double conversion UPS

  • 7 uninterruptible power supply

    1. источник непрерывного энергоснабжения
    2. источник гарантированного энергоснабжения
    3. источник бесперебойного электропитания
    4. источник бесперебойного питания
    5. гарантированное энергоснабжение
    6. гарантированное электроснабжение
    7. бесперебойное энергоснабжение

     

    бесперебойное энергоснабжение
    гарантированное энергоснабжение


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

     

    гарантированное электроснабжение
    Электроснабжение от основного и одного или нескольких резервных источников, при котором обеспечивается ограничение длительности возможных кратковременных перерывов в поступлении электроэнергии к электроустановкам предприятия.
    [ http://www.dtln.ru/slovar-terminov]

    Тематики

    EN

     

    гарантированное энергоснабжение

    [В.А.Семенов. Англо-русский словарь по релейной защите]

    Тематики

    EN

     

    источник бесперебойного питания
    ИБП

    Сочетание преобразователей, переключателей и устройств хранения электроэнергии (например, аккумуляторных батарей), образующее систему электропитания для поддержания непрерывности питания нагрузки в случае отказа источника энергоснабжения.
    [ ГОСТ Р МЭК 62040-1-1-2009]

    источник бесперебойного питания
    ИБП

    Устройство, поддерживающее заданное качество выходного напряжения при наличии нарушения питающей сети за счет использования энергии аккумуляторных батарей (исчезновение напряжения, искажения формы, отклонения от диапазона входных значений и т. д.). ИБП с двойным преобразованием класса VFI-SS-111 обеспечивают защиту от любых нарушений питающей сети.
    [ http://www.radistr.ru/misc/document423.phtml с изменениями]

    источник бесперебойного питания
    UPS
    Автоматическое устройство, устанавливаемое между источником энергии и оборудованием, обеспечивающее питание оборудования за счет энергии аккумуляторных батарей при отключении основного электроснабжения, защищающее оборудование от колебаний напряжения и электромагнитных шумов.
    [РД 01.120.00-КТН-228-06]

    EN

    uninterruptible power supply
    UPS

    An Electronic device connected between the Utility Power and electric consumers, comprising generally of filters, Rectifier, Battery, DC/AC Inverter, Transfer Switch and associated circuits.
    The UPS is intended to provide clean undisturbed stabilized AC voltage, within strict amplitude and frequency limits, to protect the consumer from any Utility Power disturbances and irregularities, including outages for a limited time dictated by the capacity of the Battery Bank. The term UPS refers generally to AC Static systems, Other types include DC and Rotary UPS.
    [ http://www.upsonnet.com/UPS-Glossary/]

    Исходная базовая идея у всех ИБП одинакова и основана на использовании резервного питания от аккумуляторов. Если напряжение в электрической сети исчезло, необходимо достаточно быстро переключить нагрузку на питание от встроенного аккумулятора, и наоборот, если напряжение восстановилось, снова переключить на питание от сети.
    Время автономной работы от аккумулятора должно быть достаточным для безопасного завершения работы компьютера без потери информации.

    В настоящее время сложилась общепринятая классификация ИБП по двум основным показа­телям - мощности и типу ИБП.

    Классификация ИБП по мощности носит упрощенный характер и отражает в основном конструктивное исполнение ИБП:

    • ИБП малой мощности от 250 до 3000 ВА выпускаются в настольном или стоечном исполнении,
    • ИБП средней мощности от 3000 до 30 000 ВА обычно изготавливаются в напольном исполнении,
    • ИБП большой мощности от 40 до нескольких сотен кВА имеют напольное исполнение и размещаются в специальных электромашинных помещениях.

    Существуют две топологии ИБП:

    • off-line (резервные) ИБП,
    • on-­line ИБП.

    [ http://www.tcs.ru/reviews/?id=345 с изменениями]

    Тематики

    Синонимы

    EN

     

    источник бесперебойного электропитания
    ИБП

    Устройство, предназначенное для защиты компьютеров и другого оборудования от сильных кожбаний или кратковременного отключения наряжения сети. В его состав обязательно входят аккумуляторные батареи, выпрямитель вводного напряжения и преобразователь посменного тока в переменный. Существует три типа источников питания: с автономным или неавтономным питанием и линейно-интерактивные.
    При автономном питании аккумуляторная батарея подключается лишь при пропадании входного напряжения (см. рис. 0-1), а при неавтономном - постоянно (см. рис. 0-3).
    Третий тип UPS аналогичен источнику с автономным питанием, но обеспечивает возможность стабилизации напряжения при работе от сети.
    Время переключения на резервное питание обычно 1-10 мс.
    Union — см. EBU, ПО, ITU-D, TTU-R, ITU-T.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    Синонимы

    EN

     

    источник гарантированного энергоснабжения
    источник бесперебойного энергопитания


    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    Синонимы

    EN

     

    источник непрерывного энергоснабжения

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > uninterruptible power supply

  • 8 lead acid battery

    1. свинцово-кислотная аккумуляторная батарея

     

    свинцово-кислотная аккумуляторная батарея
    Аккумуляторная батарея, в которой электроды изготовлены главным образом из свинца, а электролит представляет собой раствор серной кислоты.
    [Инструкция по эксплуатации стационарных свинцово-кислотных аккумуляторных батарей в составе ЭПУ на объектах ВСС России. Москва 1998 г.]


    Свинцово-кислотные аккумуляторы для стационарного оборудования связи

    О. Чекстер, И. Джосан

    Источник: http://www.solarhome.ru/biblio/accu/chekster.htm

    При организации электропитания аппаратуры связи широкое применение находят аккумуляторные установки: их применяют для обеспечения бесперебойности и надлежащего качества электропитания оборудования связи, в том числе при перерывах внешнего электроснабжения, а также для обеспечения запуска и работы автоматики собственных электростанций и электроагрегатов. В подавляющем большинстве аккумуляторных установок используются стационарные свинцово-кислотные элементы и моноблоки.

    Свинцово-кислотные аккумуляторы: за и против

    Преимущественное применение свинцово-кислотных аккумуляторов объясняется целым рядом их достоинств.

    1. Во-первых, диапазон емкостей аккумуляторов находится в пределах от единиц ампер-часов до десятков килоампер-часов, что позволяет обеспечивать комплектацию батарей любого необходимого резерва.
    2. Во-вторых, соотношение между конечными зарядным и разрядным напряжениями при зарядах и разрядах свинцово-кислотных аккумуляторов имеет наименьшее значение из всех электрохимических систем источников тока, что позволяет обеспечивать низкий перепад напряжения на нагрузке во всех режимах работы электропитающей установки.
    3. В-третьих, свинцово-кислотные аккумуляторы отличаются низкой величиной саморазряда и возможностью сохранения заряда (емкости) при длительном подзаряде.
    4. В-четвертых, свинцово-кислотные аккумуляторы обладают сравнительно низким внутренним сопротивлением, что обуславливает достаточную стабильность напряжения питания при динамических изменениях сопротивления нагрузки.

    Вместе с тем свинцово-кислотным аккумуляторам присущи недостатки, ограничивающие сферу их применения и усложняющие организацию их эксплуатации.

    Из-за низкой удельной плотности запасаемой энергии свинцово-кислотные аккумуляторы имеют достаточно большие массогабаритные параметры. Однако для стационарного применения этот показатель не имеет главенствующего значения в отличие от применения аккумуляторов для питания мобильных устройств.

    Поскольку в установках свинцово-кислотных аккумуляторов происходит газообразование, для обеспечения взрывобезопасности должна быть налажена естественная или принудительная вентиляция - в зависимости от условий применения и типа аккумуляторов. По этой же причине аккумуляторные установки нельзя размещать в герметичных шкафах, отсеках и т.д.

    Разряженные свинцово-кислотные аккумуляторы требуют немедленного заряда. В противном случае переход мелкокристаллического сульфата свинца на поверхности электродов в крупнокристаллическую фазу может привести к безвозвратной потере емкости аккумуляторов. В связи с этим при длительном хранении такие аккумуляторы (кроме сухозаряженных) необходимо периодически дозаряжать.

    Типы аккумуляторов

    По исполнению

    Согласно классификации МЭК (стандарт МЭК 50 (486)-1991) свинцово-кислотные аккумуляторы выпускаются в открытом и закрытом исполнении.

    Открытые аккумуляторы - это аккумуляторы, имеющие крышку с отверстием, через которое могут удаляться газообразные продукты, заливаться электролит, производиться замер плотности электролита. Отверстия могут быть снабжены системой вентиляции.

    Закрытые аккумуляторы - это аккумуляторы, закрытые в обычных условиях работы, но снабженные устройствами, позволяющими выделяться газу, когда внутреннее давление превышает установленное значение. Дополнительная доливка воды в такие аккумуляторы невозможна. Эти аккумуляторы остаются закрытыми, имеют низкое газообразование при соблюдении условий эксплуатации, указанных изготовителем, и предназначены для работы в исходном герметизированном состоянии на протяжении всего срока службы. Их еще называют аккумуляторами с регулируемым клапаном, герметизированными или безуходными.

    В свинцово-кислотных аккумуляторах во всех режимах их работы, в том числе и при разомкнутой цепи нагрузки (холостой ход), происходит сульфатация поверхности электродов и газообразование с расходом на эти реакции воды, входящей в состав электролита. Это вынуждает при эксплуатации обычных открытых аккумуляторов производить периодический контроль уровня и плотности электролита, доливку дистиллированной воды с проведением уравнительных зарядов, что является довольно трудоемким процессом.

    В герметизированных аккумуляторах за счет применения материалов с пониженным содержанием примесей, иммобилизации электролита и других конструктивных особенностей интенсивность сульфатации и газообразования существенно снижена, что позволяет размещать такие аккумуляторы вместе с питаемым оборудованием.

    По конструкции электродов

    Область применения и особенности эксплуатации свинцово-кислотных аккумуляторов определяются их конструкцией. По типу конструкции положительных электродов (пластин) различают следующие типы аккумуляторов:

    • с электродами большой поверхности (по классификации немецкого стандарта DIN VDE 510 - GroE);
    • с панцирными (трубчатыми) положительными электродами (по классификации DIN - OPzS и OPzV);
    • с намазными и стержневыми положительными электродами (по классификации DIN - Ogi).

    Герметизированные аккумуляторы, как правило, имеют намазные положительные и отрицательные электроды (за исключением аккумуляторов OPzV).

    Критерии выбора

    При выборе типа стационарного свинцово-кислотного аккумулятора, наиболее пригодного для конкретной области применения, необходимо руководствоваться следующими критериями:

    • режим разряда и отдаваемая при этом емкость;
    • особенности размещения;
    • особенности эксплуатации;
    • срок службы;
    • стоимость.

    Режим разряда

    При выборе аккумуляторов для определенного режима разряда следует учитывать, что при коротких режимах разряда коэффициент отдачи аккумуляторов по емкости меньше единицы. При одинаковой емкости отдача элементов с электродами большой поверхности выше в два раза, чем для элементов с панцирными электродами, и в полтора раза - чем для элементов с намазными электродами.

    Стоимость

    Стоимость аккумулятора зависит от его типа: как правило, аккумуляторы с электродами большой поверхности дороже панцирных, а намазные - дешевле и тех и других. Герметизированные аккумуляторы стоят больше, чем открытые.

    Срок службы

    Самыми долговечными при соблюдении правил эксплуатации являются аккумуляторы с электродами большой поверхности, для которых срок службы составляет 20 и более лет. Второе место по сроку службы занимают аккумуляторы с панцирными электродами - примерно 16-18 лет. Срок службы аккумуляторов с намазными электродами достигает 10-12 лет. Примерно такие же сроки эксплуатации имеют герметизированные аккумуляторы.

    Однако ряд производителей выпускает герметизированные аккумуляторы и с меньшим сроком службы, но более дешевые. По классификации европейского объединения производителей аккумуляторов EUROBAT эти герметизированные аккумуляторы подразделяются на 4 класса по характеристикам и сроку службы:

    • более 12 лет;
    • 10-12 лет;
    • 6-9 лет;
    • 3-5 лет.

    Аккумуляторы с короткими сроками службы, как правило, дешевле остальных и предназначены в основном для использования в качестве резервных источников тока в установках бесперебойного питания переменным током (UPS) и на временных объектах связи.

    Следует учитывать, что указанные выше значения срока службы соответствуют средней температуре эксплуатации 20 °С. При увеличении температуры эксплуатации на каждые 10 °С за счет увеличения скорости электрохимических процессов в аккумуляторах их срок службы будет сокращаться в 2 раза.

    Размещение

    По величине занимаемой площади при эксплуатации преимущество имеют герметизированные аккумуляторы. За ними в порядке возрастания занимаемой площади следуют аккумуляторы открытых типов с намазными электродами, панцирными электродами и с электродами большой поверхности.

    Размещать герметизированные аккумуляторы при эксплуатации, как правило, допускается и в вертикальном, и в горизонтальном положении - это позволяет более экономно использовать площадь под размещение электрооборудования. При горизонтальном размещении герметизированных аккумуляторов, если нет других предписаний производителя, аккумуляторы устанавливаются таким образом, чтобы пакеты электродных пластин занимали вертикальное положение.

    Эксплуатация

    Минимальных трудовых затрат при эксплуатации требуют герметизированные аккумуляторы. Остальные типы аккумуляторов требуют больших трудозатрат обслуживающего персонала, особенно те устройства, у которых величина примеси сурьмы в положительных решетках превышает 3%.

    Качество сборки, а также укупорка соединения крышки с транспортировочной пробкой (для аккумуляторов открытых типов) или предохранительным клапаном (для герметизированных аккумуляторов) должны обеспечивать герметизацию аккумуляторов при избыточном или пониженном на 20 кПа (150 мм рт. ст.) атмосферном давлении и исключать попадание внутрь атмосферного кислорода и влаги, способных ускорять сульфатацию электродов и коррозию токосборов и борнов у сухозаряженных аккумуляторов при хранении, а также исключать выход изнутри кислоты и аэрозолей при их эксплуатации. Для герметизированных аккумуляторов, кроме того, качество укупорки должно обеспечивать нормальные условия рекомбинации кислорода и ограничивать выход газа при заданных изготовителем эксплуатационных режимах работы.

    Электрические характеристики

    Емкость

    Основным параметром, характеризующим качество аккумулятора при заданных массогабаритных показателях, является его электрическая емкость, определяемая по числу ампер-часов электричества, получаемого при разряде аккумулятора определенным током до заданного конечного напряжения.

    По классификации ГОСТ Р МЭК 896-1-95, номинальная емкость стационарного аккумулятора10) определяется по времени его разряда током десятичасового режима разряда до конечного напряжения 1,8 В/эл. при средней температуре электролита при разряде 20 °С. Если средняя температура электролита при разряде отличается от 20 °С, полученное значение фактической емкости (Сф) приводят к температуре 20 °С, используя формулу:

    С = Сф / [1 + z(t - 20)]

    где z - температурный коэффициент емкости, равный 0,006 °С-1 (для режимов разряда более часа) и 0,01 °С-1 (для режимов разряда, равных одному часу и менее); t - фактическое значение средней температуры электролита при разряде, °С.

    Емкость аккумуляторов при более коротких режимах разряда меньше номинальной и при температуре электролита (20 ± 5) °С для аккумуляторов с разными типами электродов должна быть не менее указанных в таблице значений (с учетом обеспечения приемлемых пределов изменения напряжения на аппаратуре связи).

    Как правило, при вводе в эксплуатацию аккумуляторов с малым сроком хранения на первом цикле разряда батарея должна отдавать не менее 95% емкости, указанной в таблице для 10-, 5-, 3- и 1-часового режимов разряда, а на 5-10-м цикле разряда (в зависимости от предписания изготовителя) -не менее 100% емкости, указанной в таблице для 10-, 5-, 3-, 1- и 0,5-часового режимов разряда.

    При выборе аккумуляторов следует обращать внимание на то, при каких условиях задается изготовителем значение номинальной емкости. Если значение емкости задается при более высокой температуре, то для сравнения данного типа аккумулятора с другими необходимо предварительно пересчитать емкость на температуру 20 °С. Если значение емкости задается при более низком конечном напряжении разряда, необходимо пересчитать емкость по данным разряда аккумуляторов постоянным током, приводимую в эксплуатационной документации или рекламных данных производителя для данного режима разряда, до конечного напряжения, указанного в таблице.

    Кроме того, при оценке аккумулятора следует учитывать исходное значение плотности электролита, при которой задается емкость: если исходная плотность повышена, то весьма вероятно, что срок службы аккумулятора сократится.

    Пригодность к буферной работе

    Другим параметром, характеризующим стационарные свинцово-кислотные аккумуляторы, является их пригодность к буферной работе. Это означает, что предварительно заряженная батарея, подключенная параллельно с нагрузкой к выпрямительным устройствам, должна сохранять свою емкость при указанном изготовителем напряжении подзаряда и заданной его нестабильности. Обычно напряжение подзаряда Uпз указывается для каждого типа аккумулятора и находится в пределах 2,18-2,27 В/эл. (при 20 °С). При эксплуатации с другими климатическими условиями следует учитывать температурный коэффициент изменения напряжения подзаряда.

    Нестабильность подзарядного напряжения для основных типов аккумуляторов не должна превышать 1%, что накладывает определенные требования на выбор выпрямительных устройств при проектировании электропитающих установок связи.

    При буферной работе для достижения приемлемого срока службы свинцово-кислотных аккумуляторов необходимо не превышать допустимый ток их заряда, который задается различными производителями в пределах 0,1-0,3 С10. При этом следует помнить, что ток заряда аккумуляторов с напряжением, превосходящим 2,4 В/эл., не должен превышать величину 0,05 С10.

    Разброс напряжения элементов

    Важным параметром, определяемым технологией изготовления аккумуляторов, является разброс напряжения отдельных элементов в составе батареи при заряде, подзаряде и разряде. Для открытых типов аккумуляторов этот параметр задается изготовителем, как правило, в пределах ± 2% от среднего значения. При коротких режимах разряда (1-часовом и менее) разброс напряжений не должен превышать +5%. Обычно для аккумуляторов с содержанием более 2% сурьмы в основе положительных электродов разброс напряжений отдельных элементов в батарее значительно ниже вышеуказанного и не приводит к осложнениям в процессе эксплуатации аккумуляторных установок.

    Для аккумуляторов с меньшим содержанием сурьмы в основе положительных электродов или с безсурьмянистыми сплавами указанный разброс напряжения элементов значительно больше и в первый год после ввода в действие может составлять +10% от среднего значения с последующим снижением в процессе эксплуатации.

    Отсутствие тенденции к снижению величины разброса напряжения в течение первого года после ввода в действие или увеличение разброса напряжения при последующей эксплуатации свидетельствует о дефектах устройства или о нарушении условий эксплуатации.

    Особенно опасно длительное превышение напряжения на отдельных элементах в составе батареи, превышающее 2,4 В/эл., поскольку это может привести к повышенному расходу воды в отдельных элементах при заряде или подзаряде батареи и к сокращению срока ее службы или повышению трудоемкости обслуживания (для аккумуляторов открытых типов это означает более частые доливки воды). Кроме того, значительный разброс напряжения элементов в батарее может привести к потере ее емкости вследствие чрезмерно глубокого разряда отдельных элементов при разряде батареи.

    Саморазряд

    Качество технологии изготовления аккумуляторов оценивается также и по такой характеристике, как саморазряд.

    Саморазряд (по определению ГОСТ Р МЭК 896-1-95 - сохранность заряда) определяется как процентная доля потери емкости бездействующим аккумулятором (при разомкнутой внешней цепи) при хранении в течение заданного промежутка времени при температуре 20 °С. Этот параметр определяет продолжительность хранения батареи в промежутках между очередными зарядами, а также величину подзарядного тока заряженной батареи.

    Величина саморазряда в значительной степени зависит от температуры электролита, поэтому для уменьшения подзарядного тока батареи в буферном режиме ее работы или для увеличения времени хранения батареи в бездействии целесообразно выбирать помещения с пониженной средней температурой.

    Обычно среднесуточный саморазряд открытых типов аккумуляторов при 90-суточном хранении при температуре 20 ° С не должен превышать 1% номинальной емкости, с ростом температуры на 10 °С это значение удваивается. Среднесуточный саморазряд герметизированных аккумуляторов при тех же условиях хранения, как правило, не должен превышать 0,1% номинальной емкости.

    Внутреннее сопротивление и ток короткого замыкания

    Для расчета цепей автоматики и защиты аккумуляторных батарей ГОСТ Р МЭК 896-1-95 регламентирует такие характеристики аккумуляторов как их внутреннее сопротивление и ток короткого замыкания. Эти параметры определяются расчетным путем по установившимся значениям напряжения при разряде батарей токами достаточно большой величины (обычно равными 4 С10 и 20 С10) и должны приводиться в технической документации производителя. По этим данным может быть рассчитан такой выходной динамический параметр электропитающей установки (ЭПУ), как нестабильность ее выходного напряжения при скачкообразных изменениях тока нагрузки, поскольку в буферных ЭПУ выходное сопротивление установки в основном определяется внутренним сопротивлением батареи.

    Примечание:

    "Бумажная" версия статьи содержит сводную таблицу характеристик аккумуляторов (стр. 126-128). Так как формат таблицы очень неудобен для размещения на сайте, здесь эта таблица не приводится.

    Об авторах: О.П. Чекстер, начальник лаборатории ФГУП ЛОНИИС; И.М. Джосан, ведущий инженер ФГУП ЛОНИИС

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > lead acid battery

  • 9 ferroresonant UPS

    1. феррорезонансный источник бесперебойного питания

     

    феррорезонансный источник бесперебойного питания
    -

    EN

    ferroresonant UPS
    A Usystem which implements output voltage stabilization, by means of a special output transformer, utilizing the constant voltage characteristic of the transformers’ saturated iron core.
    To eliminate the current drawn from the inverter by the magnetizing transformer, a capacitor is added to form a parallel resonant LC filter, tuned to UPS frequency.
    The ferroresonant method provides output isolation and harmonic filtering. The shortcomings are, relatively low efficiency, increased weight and volume.
    [ http://www.upsonnet.com/UPS-Glossary/]

    Феррорезонансные ИБП названы так по применяемому в них феррорезонансному трансформатору. В основу принципа его работы положен эффект феррорезонанса, применяемый в широко распространенных стабилизаторах напряжения. При нормальной работе трансформатор выполняет функции стабилизатора напряжения и сетевого фильтра. В случае потери питания феррорезонансный трансформатор обеспечивает нагрузку питанием за счет энергии, накопленной в его магнитной системе. Интервала времени длительностью 8... 16 мс достаточно для запуска ин­вертора, который уже за счет энергии аккумуляторной батареи продолжает поддер­живать нагрузку. Коэффициент полезного действия ИБП данного типа соответству­ет КПД систем двойного преобразования (не превышает 93 %). Данный тип источ­ников бесперебойного питания широкого распространения не получил, хотя обес­печивает очень высокий уровень защиты от высоковольтных выбросов и высокий уровень защиты от электромагнитных шумов. Предел мощности ИБП данного типа не превышает 18 кВА.
    [ http://electromaster.ru/modules/myarticles/article.php?storyid=365]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > ferroresonant UPS

См. также в других словарях:

  • потери энергии при работе (механизма) — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN running losses …   Справочник технического переводчика

  • Норма расхода энергии (топлива) технологическая — Технологическая норма расхода энергии (топлива) норма расхода энергии (топлива) на основные и вспомогательные технологические процессы изготовления, ремонта и утилизации изделия, включая расход (работу) на поддержание технологических агрегатов в… …   Официальная терминология

  • Технологическая норма расхода топлива, тепловой и электрической энергии — – норма, которая учитывает их расход на основные и вспомогательные технологические процессы производства данного вида продукции (работы), расход на поддержание технологических агрегатов в горячем резерве, на их разогрев и пуск после текущих… …   Коммерческая электроэнергетика. Словарь-справочник

  • источник бесперебойного питания с двойным преобразованием (энергии) — EN double conversion Topology of On Line UPS (VFI class per IEC 62040 3). The AC mains voltage is converted to DC by means of an ac to DC Rectifier (or Charger), The DC voltage is then converted to conditioned AC by means of the Inverter.… …   Справочник технического переводчика

  • ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ И МАТЕРИИ — ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ И МАТЕРИИ, два тесно связанных между собой н очень близких по содержанию закона, лежащих в основании всего точного естествознания. Эти законы имеют чисто количественный характер и являются законами экспериментальными.… …   Большая медицинская энциклопедия

  • Коммерческие потери электроэнергии — – потери, обусловленные хищениями электроэнергии, несоответствием показаний счетчиков оплате за электроэнергию бытовыми потребителями и другими причинами в сфере организации контроля потребления энергии . К коммерческим относят потери… …   Коммерческая электроэнергетика. Словарь-справочник

  • Преобразователь электрической энергии — Преобразователь электрической энергии  это электротехническое устройство, предназначенное для преобразования параметров электрической энергии (напряжения, частоты, числа фаз, формы сигнала). Для реализации преобразователей широко… …   Википедия

  • технологическая — технологическая                 время, в течение которого мастика сохраняет способность к нанесению. Источник: Рекомендации: Методические рекомендации по …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 53865-2010: Системы газораспределительные. Термины и определения — Терминология ГОСТ Р 53865 2010: Системы газораспределительные. Термины и определения оригинал документа: 10 аварийно восстановительные работы на сети газораспределения [газопотребления]: Комплекс технологических операций по восстановлению… …   Словарь-справочник терминов нормативно-технической документации

  • Битва при Фучжоу (1884) — Битва при Фучжоу Франко китайская война …   Википедия

  • технологическая норма расхода газа — Технически обоснованная норма расхода газа, учитывающая его расход на осуществление основных и вспомогательных технологических процессов производства данного вида продукции, расход на поддержание технологических агрегатов в горячем резерве, на их …   Справочник технического переводчика

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»